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Emergence from Inputs and Advantage over Fixed Features University of Wisconsin-Madison

Motivation Network: 2-Layer, Hinge-loss, L2-regularizer, Gaussian init, Gradient descent Experiments

* Train a network: g (x) = X7 a;0((w;, x) + b;) Verification of the Analysis

« Hidden Layers: good representations of the inputs for prediction _
e Activation: truncated ReLU o (z) = min(1, max(0, z))

* Neurons: correspond to interesting patterns in the inputs 100 - Fressssssssssssssssieses
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Visualization of neurons in a convnet. we can geta network with error at most €. j
Figures from: Visualizing and Understanding Convolutional Networks, Zeiler and Fergus, ECCV’14.
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? Questions 1. With input structure, poly-size 2-layer neural networks can achieve 2 eete 2
O’ « How features learned from inputs via gradient descent? small classification loss with high p.robablllty. . . . , . . .
. . . 2. Success comes from feature learning: 0 100 200 300 400 500 600
 Is learning features from inputs necessary for the superior performance? o First learns and improves the neuron weights s.t. there is a good step
(o6} Our results classifier on the neurons Network Learning Result Network—
e o Then learns a good classifier _
« Propose a theoretical model of the data with input structure Lower Bound for Fixed Feature Approach NTK— & Random Feature—
* Prove network learning via gradient descent can succeed Lower Bound for Fixed Feature Approach Lower Bound for Without Input Structure — VS ---

* Prove fixed feature approaches fail

* Prove learning without input structure fails * Fixed feature approach:

e Let ¥ (x) € [—1,1]" be any data-independent N-dim feature mapping
Problem Settlng e Linear models h(x) = (¥ (x), ) with bounded weight |||, < B * Visualization of the neuron weights (normalized to unit length)

Feature Learning on Synthetic Data

* They clustered around ). -, M; and
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cannot achieve as small loss.
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Feature Learning on MNIST(0/1)
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* Without input structure: sample ¢ uniformly from {0,1}” " L M SR 5 il Lo
e Statistical Query (SQ) algorithms: ' cLe e

* Asks statistical queries (Q, 7) about the data
* Input x = M@, with dictionary M € R**P, and pattern indicator ¢ € {0,1}" * Receives an estimation of Pr[Q (x, y) is true] within error ©

[(11 ..... ()%4] — [O., “ ey 0.8, ey 0.3, ceey ().57 . ,O:I Figure from Brian Booth

e Assume orthonormal M / \
Theorem (informal)

) : _ * The neurons gradually form two clusters around ground-truth weights
For any SQ algorithm that can learn without the input structure to

1 1 « Show the emergence of the features in the neural networks
classification error less than P either the number of queries or . However, in fixed feature approaches, there is no feature learning
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3. Generate label y using ¢ and 4, P ) L /DA\Y/3 Take Home Message
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Without input structure, all poly algo in the Statistical Query model (including
networks and fixed features above) cannot achieve as small loss.

Modeling the Labels: Relevant Pattern Counts
1. Sample ¢ from distribution D
2. Generate input x using ¢ and the dictionary M

Input Structure = Feature Learning
=> Superior Performance

Assumptions on D
A. Balance classes: Pr|y = +1| = Pr|y = —1] = %

B. Relevant patterns: foranyi € A,y = E|y¢;| — E|y|E[¢p;] > 0
C. Irrelevant patterns: for any i & A, ¢; isi.i.d. with p, = Pr[¢; = 1]



